SLAC topics

Batteries RSS feed

Batteries and similar devices accept, store, and release electricity on demand. Scientists are using new tools to better understand the electrical and chemical processes in batteries to produce a new generation of highly efficient, electrical energy storage. 

Related links:   
Energy & sustainability news collection 
Energy sciences 
DOE explains...batteries

Illustration from SLAC Public Lecture series titled Improving batteries from the atoms up.

News Feature

The Aqueous Battery Consortium of Stanford, SLAC, and 13 others seeks to overcome the limitations of a battery using water as its electrolyte.

Press Release

Charging lithium-ion batteries at high currents just before they leave the factory is 30 times faster and increases battery lifespans by 50%, according to...

An illustration shows batteries flow down an assembly line, turning them from gray to green.
Video

Learn more about how materials chemist and SLAC Associate Scientist Molleigh Preefer uses the powerful X-rays of SLAC’s synchrotron to watch battery charging cycles...

Stillframe of video interview with Molleigh_Preefer
Video
News Feature

A materials chemist and SLAC associate scientist, Preefer is excited about the synergies being sparked at the SLAC-Stanford Battery Center. 

Headshot Molleigh Preefer at SSRL
News Feature

The SLAC/Stanford researcher is a leading materials scientist and entrepreneur whose research is paving the way for better batteries, cleaner power grids.

SLAC and Stanford researcher Will Chueh
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.

The new SLAC-Stanford Battery Center creates a generational opportunity enabling translational research in electrochemical science and technology bridging across fundamental science to deployment.

Arrillaga Science Center
News Brief

The team reduced the amount of expensive platinum group metals needed to make an effective cell and found a new way to test future...

An illustration of a thin film resembling dry, cracked earth.
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

Analyzing X-ray movies with computer vision reveals how nanoparticles in a lithium-ion battery electrode work.

Illustration of battery electrode nanoparticles being imaged by X-rays
News Feature

Leora Dresselhaus-Marais, Claudio Emma,  Bernhard Mistlberger and Johanna Nelson Weker will pursue cutting-edge research into decarbonizing steel production, theoretical physics, generating more intense particle...

This photo shows all four recipients from SLAC and Stanford of the DOE's 2023 Early Career Award
News Feature

Batteries come in many shapes and sizes, but their materials can be hard to source. SLAC researchers are trying to build them with more...

This is a graphic representation of a battery and the things that batteries can power