August 14, 2017

Video: Dark Matter Hunt with LUX-ZEPLIN

SLAC scientists are helping to build and test one of the biggest and most sensitive detectors ever designed to catch hypothetical WIMP particles.

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory are on a quest to solve one of physics’ biggest mysteries: What exactly is dark matter – the invisible substance that accounts for 85 percent of all the matter in the universe but can’t be seen even with our most advanced scientific instruments?

Most scientists believe it’s made of ghostly particles that rarely bump into their surroundings; that’s why billions of dark matter particles might zip right through our bodies every second without us even noticing. Leading candidates for dark matter particles are WIMPs, or weakly interacting massive particles.

Now SLAC is helping to build and test one of the biggest and most sensitive detectors ever designed to catch a WIMP – the LUX-ZEPLIN or LZ detector. The following video explains how it works.

Video

Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

LZ Dark Matter Detector
SLAC is helping to build and test the LUX-ZEPLIN (LZ) detector, one of the biggest and most sensitive detectors ever designed to catch hypothetical dark matter particles known as weakly interacting massive particles (WIMPs).  (Greg Stewart/SLAC National Accelerator Laboratory)
Dig Deeper

Related stories

News Brief

The theorist is one of seven Stanford faculty members elected by the Academy this year, recognizing their exceptional contributions in their fields and professions.

Lance Dixon pointing at mathematical formula on a chalkboard
News Feature

NSF–DOE Vera C. Rubin Observatory is gearing up to illuminate the Universe’s darkest secrets with groundbreaking new technology.

Cosmic Focus
News Brief
VIA Symmetry Magazine

Explain it in 60 seconds: big data

How do you solve a problem like big data?

Illustration for big data story
News Brief

The theorist is one of seven Stanford faculty members elected by the Academy this year, recognizing their exceptional contributions in their fields and professions.

Lance Dixon pointing at mathematical formula on a chalkboard
News Feature

NSF–DOE Vera C. Rubin Observatory is gearing up to illuminate the Universe’s darkest secrets with groundbreaking new technology.

Cosmic Focus
News Brief
VIA Symmetry Magazine

Explain it in 60 seconds: big data

How do you solve a problem like big data?

Illustration for big data story
News Feature

The $3 million Breakthrough Prize in Fundamental Physics went to the ATLAS, CMS, ALICE, and LHCb collaborations representing 13,508 researchers.

Photo of the massive mural of the ATLAS detector at CERN Point 1 painted by artist Josef Kristofoletti.
News Feature

Now that NSF–DOE Vera C. Rubin Observatory’s LSST Camera has been installed, what’s next?

A large black cylindrical camera is positioned in a telescope dome.
News Brief

The Hubbard Model was unable to predict electron dynamics in a simplified, one-dimensional cuprate system, hinting at an additional attractive force. 

Illustration of ultrastrong attraction between electrons in neighboring atoms within a 1D cuprate chain