SLAC is the world’s leading center for developing “ultrafast” X-ray, laser and electron beams that allow us to see atoms and molecules moving in just millionths of a billionth of a second. We can even create stop-action movies of these tiny events.
The ultra-bright X-ray laser pulses of the Linac Coherent Light Source at SLAC National Accelerator Laboratory can be used to strip electrons away from atoms, creating ions with strong charges.
(Greg Stewart/SLAC National Accelerator Laboratory)
Revealed for the first time by a new X-ray laser technique, their surprisingly unruly response has profound implications for designing and controlling materials.
A team of electrical designers develops specialized microchips for a broad range of scientific applications, including X-ray science and particle physics.
This video explains how researchers at SLAC are using a method known as ultrafast electron diffraction (UED) to develop an atomic-level understanding of how...
In a major step forward, SLAC’s X-ray laser captures all four stable states of the process that produces the oxygen we breathe, as well as fleeting steps in between. The work opens doors to understanding the past and creating a...
Revealed for the first time by a new X-ray laser technique, their surprisingly unruly response has profound implications for designing and controlling materials.
In a first, researchers measure extremely small and fast changes that occur in plasma when it’s zapped with a laser. Their technique will have applications in astrophysics, medicine and fusion energy.
A team of electrical designers develops specialized microchips for a broad range of scientific applications, including X-ray science and particle physics.
This video explains how researchers at SLAC are using a method known as ultrafast electron diffraction (UED) to develop an atomic-level understanding of how metals melt, which could help them design materials for applications where materials have to withstand extreme...