Stanford Institute for Materials & Energy Sciences (SIMES)
SIMES researchers study complex, novel materials that could transform the energy landscape by making computing much more efficient or transmitting power over long distances with no loss, for instance.
An illustration shows polarons – fleeting distortions in a material’s atomic lattice ––in a promising next-generation energy material, lead hybrid perovskite.
(Greg Stewart/SLAC National Accelerator Laboratory)
Watching electrons sprint between atomically thin layers of material will shed light on the fundamental workings of semiconductors, solar cells and other key technologies.
Revealed for the first time by a new X-ray laser technique, their surprisingly unruly response has profound implications for designing and controlling materials.
A SLAC-Stanford study reveals exactly what it takes for diamond to crystallize around a “seed” cluster of atoms. The results apply to industrial processes...
Watching electrons sprint between atomically thin layers of material will shed light on the fundamental workings of semiconductors, solar cells and other key technologies.
New research offers the first complete picture of why a promising approach of stuffing more lithium into battery cathodes leads to their failure. A better understanding of this could be the key to smaller phone batteries and electric cars that...
The SIMES researcher was a rare theorist who concerned himself with the implications of his abstract ideas about new quantum states of matter on experiments and future technologies.
Revealed for the first time by a new X-ray laser technique, their surprisingly unruly response has profound implications for designing and controlling materials.
A SLAC-Stanford study reveals exactly what it takes for diamond to crystallize around a “seed” cluster of atoms. The results apply to industrial processes and to what happens in clouds overhead.