SLAC topics

Linac Coherent Light Source (LCLS) RSS feed

The Linac Coherent Light Source at SLAC, the world’s first hard X-ray free-electron laser, takes X-ray snapshots of atoms and molecules at work, revealing fundamental processes in materials, technology and living things.

Visit LCLS website

Rooftop view of Linac Coherent Light Source (LCLS)

News Feature

A new study, based on an experiment at SLAC's X-ray laser, pins down a major factor behind the appearance of superconductivity—the ability to conduct...

Image - In this illustration, stripes of charge run in perpendicular "ripples" between the copper-oxide layers of a material (top). When a mid-infrared laser pulse strikes the material, it "melts" these ripples and induces superconductivity.
News Feature

A new theory and computer simulation by SLAC and Stanford researchers rule out high-energy magnetic interactions as a major factor in making copper oxide...

Photo - Researchers at SLAC
News Feature

Five years ago, the brightest source of X-rays on the planet lit up at SLAC. The Linac Coherent Light Source (LCLS) X-ray laser's scientific...

Image - Some of the LCLS team members stand by the newly installed undulators in this 2009 photo. From right: Mike Zurawel, Geoff Pile from Argonne National Laboratory, Paul Emma, Dave Schultz, Heinz-Dieter Nuhn and Don Schafer. (Brad Plummer)
News Feature

A new tool for analyzing mountains of data from SLAC’s Linac Coherent Lightsource (LCLS) X-ray laser can produce high-quality images of important proteins using...

Photo - Nicholas Sauter, middle, points to a monitor during an experiment this month at SLAC's Linac Coherent Light Source X-ray laser.
News Feature

A new system at SLAC National Accelerator Laboratory's X-ray laser narrows a rainbow spectrum of X-ray colors to a more intense band of light...

Photo - A view of the soft X-ray self-seeding system during installation in the Undulator Hall at SLAC's Linac Coherent Light Source X-ray laser. (Brad Plummer/SLAC)
News Feature

An experiment at SLAC’s X-ray laser has revealed the first atomic-scale details of a new technique that could point the way to faster data...

Image - A laser-driven electric pulse excites a magnetic response in a multiferroic material that is measured by SLAC's X-ray laser pulse (blue).
News Feature

Growing up in China shortly after the Cultural Revolution, Zhirong Huang may have been the only middle-school child in Beijing who knew anything about...

Zhirong Huang, associate professor of physics
News Feature

A 2-ton instrument the size of a compact car, now available at SLAC's X-ray laser, makes it possible to capture more detailed images of...

Photo - A view of the LAMP instrument at SLAC's Linac Coherent Light Source X-ray laser. (SLAC)
News Feature

A study with SLAC's X-ray laser is a key step toward producing movies that show how a single molecule changes during a chemical reaction

Image - Scientists at SLAC's Linac Coherent Light Source used an optical laser to orient molecules along a common axis, like a compass needle to a magnet, and then used X-ray laser pulses to explore structural details. (koocbor/Flickr: http://www.flickr.c
Press Release

New Technology Allows Faster, More Accurate Imaging of Hard-to-study Membrane Proteins

Illustration - man with migraine, serotonin receptor bound to anti-migraine drug
News Feature

An international team led by scientists from two SLAC/Stanford institutes has devised a much faster and more accurate way of measuring subtle atomic vibrations...

Image showing laser beam energizing atoms in crystal lattic
News Feature

Researchers have found a new way to probe molecules and atoms with an X-ray laser, setting off cascading bursts of light that reveal precise...

Image - An X-ray pulse at SLAC's Linac Coherent Light Source strikes a neon atom, causing electrons to reshuffle and then re-emit light at a slightly different X-ray wavelength, and also stimulating a chain reaction of amplified light in neighboring atoms