April 22, 2014

Rolls-Royce, Collaborators Study Ways to Strengthen Titanium Aircraft Parts at LCLS

Rolls-Royce researchers came to SLAC earlier this month as part of a team testing titanium and its alloys, such as those used in engine parts, landing gear and other aircraft components

By Glenn Roberts Jr.

Rolls-Royce researchers came to SLAC earlier this month as part of a team testing titanium and titanium alloys such as those used in engine parts, landing gear and other aircraft components.

While the Rolls-Royce brand is also associated with luxury cars, this separate company, Rolls-Royce PLC, is a major global manufacturer of aircraft engines that power over 30 types of commercial aircraft. It is the first industrial user of SLAC's Linac Coherent Light Source X-ray laser since LCLS opened to visiting scientists in October 2009.

"Understanding materials is what drives innovation in the materials," said Michael G. Glavicic, a materials specialist for Rolls-Royce Corp. in Indianapolis, who led the experiment with David Dye of Imperial College London.

Ultimately, Glavicic said, "We want to understand what happens to a material when it's in an engine. The more we know about how an alloy behaves, the more we can be creative and figure out ways to take advantage of those properties."

The company's researchers often partner with laboratories and universities to explore hybrid materials that could find their way into products. In this case they are seeking a deeper understanding of how titanium alloys behave when pushed to extremes not found in any flight test. The results could lead to ways to make the alloys even tougher.

Lightweight, super-strong and able to withstand high heat and stress, titanium is increasingly airborne; the major application of titanium alloys is in aircraft components.

The LCLS experiment was designed to study the creation and growth of deformation in thin-foil samples of titanium and its alloys. Researchers hit the samples with powerful optical laser pulses at LCLS, and then used the X-ray laser to study how the material responded to this shock. The ultrashort, ultrabright X-ray laser pulses can uniquely capture images of samples at the nanoscale, and in increments measured in tens of femtoseconds (quadrillionths of a second).

One type of stress-caused deformation that researchers hoped to see forming is known as "twinning," named for mirror-image patterns that appear in the metal's microscopic structure. These twin regions are separated by thin boundaries that appear as lines. Like well-sewn seams across layers of fabric, the twin boundaries can actually strengthen the material.

"This is something that nobody has done before in that we're hoping to see 'twins' form – see the rate at which they form, to understand what role chemistry plays in causing things to twin," Glavicic said. "It could potentially confirm or build on current theories."

Researchers hope to use deformation mechanisms that are now considered a hindrance to improve how materials withstand stress. While commercial applications from such an experiment may be decades away, Glavicic said the goal is to gain fundamental insights about material properties that can be shared with the scientific community.

"LCLS is uniquely suited to this type of experiment," said Despina Milathianaki, an LCLS staff scientist involved in the research, "because the deformation processes often evolve in trillionths of a second," or picoseconds. The tiny focus and coherence of the LCLS X-ray pulses, she said, also allow scientists to capture images within a single "crystallite" or grain in the metal, which is an individual building block in a metal's structure.

"We hope that this is the first of many collaborations with industry partners seeking to understand fundamental materials science by exploiting the unique capabilities of LCLS," Milathianaki added.


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. 

SLAC’s LCLS is the world’s most powerful X-ray free-electron laser. A DOE Office of Science national user facility, its highly focused beam shines a billion times brighter than previous X-ray sources to shed light on fundamental processes of chemistry, materials and energy science, technology and life itself. For more information, visit lcls.slac.stanford.edu.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov..

Photo - Despina Milathianaki, a staff scientist at SLAC's LCLS, holds a series of titanium alloy samples prepared for an experiment. The experiment was designed to study the laser-shocked state of the materials. (Fabricio Sousa/SLAC)
Despina Milathianaki, a staff scientist at SLAC's LCLS, holds a series of titanium alloy samples prepared for an experiment. The experiment was designed to study the laser-shocked state of the materials. (Fabricio Sousa/SLAC)
Photo - Some of the members of a Rolls-Royce-led team at SLAC's LCLS explore shocked titanium and titanium alloys. From left: Tom Swinburne, Despina Miathianakis, Michael C. Glavicic, Garth Williams (Fabricio Sousa/SLAC)
Some of the members of a Rolls-Royce-led team at SLAC's LCLS X-ray laser explore shocked titanium and titanium alloys. From left: Tom Swinburne, graduate student at Imperial College London; Despina Miathianakis, LCLS staff scientist; Michael G. Glavicic, associate fellow materials at Rolls-Royce Corp.; and Garth Williams, LCLS staff scientist. (Fabricio Sousa/SLAC)
Photo - The sample chamber at the Coherent X-ray Imaging experimental station at SLAC's LCLS. (Fabricio Sousa/SLAC)
The sample chamber at the Coherent X-ray Imaging experimental station at SLAC's LCLS. (Fabricio Sousa/SLAC)
Photo - An equipment table at the Coherent X-ray Imaging (CXI) experimental station at SLAC's LCLS. The equipment was put to use in an experiment studying the shocked state of titanium and titanium alloys. (Fabricio Sousa/SLAC)
An equipment table at the Coherent X-ray Imaging (CXI) experimental station at SLAC's LCLS. The equipment was put to use in an experiment studying the shocked state of titanium and titanium alloys. (Fabricio Sousa/SLAC)
Dig Deeper

Related stories

News Feature

The leaders of SLAC's Technology Innovation Directorate discuss how their group supports the lab's most innovative projects.

TID senior managers
News Feature

SLAC’s Matt Garrett and Susan Simpkins talk about tech transfer that brings innovations from the national lab to the people, including advances for medical...

Tech Transfer
News Feature

The process, which also facilitates name changes for religious, marital and other reasons, allows researchers of all genders to own their academic work by...

Name Change
News Feature

The leaders of SLAC's Technology Innovation Directorate discuss how their group supports the lab's most innovative projects.

TID senior managers
News Feature

SLAC’s Matt Garrett and Susan Simpkins talk about tech transfer that brings innovations from the national lab to the people, including advances for medical...

Tech Transfer
News Feature

The process, which also facilitates name changes for religious, marital and other reasons, allows researchers of all genders to own their academic work by...

Name Change
News Feature

Q-NEXT will tackle next-generation quantum science challenges through a public-private partnership, ensuring U.S. leadership in an economically crucial arena.

QIS public-private partnership.
News Feature

The ePix10k detector is ready to advance science at SLAC’s Linac Coherent Light Source X-ray laser and at facilities around the world.

ePix10k
News Feature

The White House announced $50 million in funding for ‘Battery500’, a five year effort, as part of a package of initiatives to accelerate adoption...