Photograph

Battery’s liquid electrolyte

A battery's liquid electrolyte clings to small holes in a cryo-EM sample holder.

A battery's liquid electrolyte clings to small holes in a cryo-EM sample holder. The electrolyte will be fast-frozen into a glassy state to preserve its contents for study with the cryo-EM electron beam.

Weijiang Zhou/Stanford University

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC media relations: 

media@slac.stanford.edu 
 

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Tags

Featured in

Related news

Cryo-EM snapshots of the solid-electrolyte interphase, or SEI, reveal its natural swollen state and offer a new approach to lithium-metal battery design.

A battery's liquid electrolyte clings to small holes in a cryo-EM sample holder.
Dig Deeper

Related images & videos