SLAC topics

LCLS Matter in Extreme Conditions (MEC) RSS feed

The LCLS beam with its high peak brightness, short pulse duration, and tunable X-ray photon energy provides revolutionary capabilities to study the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions (MEC) instrument is to combine the unique LCLS beam with high power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science.

Scientists prepare for an experiment in the Matter in Extreme Conditions (MEC) chamber.

News Brief

This research advances our understanding of Earth's deep interior and exoplanets, opening new research avenues in Earth and planetary sciences.

mec_super_earth
Press Release

The high-energy upgrade will keep the U.S. at the forefront of X-ray science and technology, allowing researchers to advance fields such as sustainability, human...

LCLS-II-HE
News Brief

An X-ray imaging technique revealed that copper nanofoams used in inertial fusion experiments aren't as uniform as expected.

Green blobs on a blue background.
Past Event

Double your pressure, double your fun! Join us for SLAC on Tap on May 9, when SLAC scientist and rock star Arianna Gleason will...

SLAC on tap promo with Arianna Gleason
News Feature

Following the NIF ignition demonstrations, the prospect of developing a fusion energy source using lasers looks brighter than ever. 

Illustration featuring three SLAC scientists Alan Fry, Arianna Gleason, and Siegfried Glenzer.
News Feature

The research could lead to a better understanding of how metals behave under extreme conditions, which will aid in the development of more resilient...

phonon hardening
News Feature

A new experiment suggests that this exotic precipitation forms at even lower pressures and temperatures than previously thought and could influence the unusual magnetic...

Diamond rain
News Brief

SLAC will partner in two collaborations that aim to speed up progress in fusion energy science and technology.

Laser engineer Eric Cunningham with the Matter in Extreme Conditions optical laser
News Feature

New research has implications for understanding Earth's evolution, interpreting unusual seismic signals and the study of exoplanets.

Illustration of earth with laser
Illustration

Deep inside rocky planets like Earth, the behavior of iron can greatly affect the properties of molten rock materials: properties that influenced how Earth...

Illustration of earth with laser
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
Illustration

Illustration of how a single crystal sample of silicon deforms during shock compression on nanosecond timescales.

MEC silicon