Computer simulations and lab experiments help researchers understand the violent universe and could potentially lead to new technologies that benefit humankind.
A 200-terawatt laser at SLAC will synchronize with X-ray laser pulses to precisely measure more extreme temperatures and pressures in exotic forms of matter.
A major international effort at SLAC is focused on improving our views of intact viruses, living bacteria and other tiny samples using the brightest...
Just as Schroedinger's Cat is both alive and dead, an atom or molecule can be in two different states at once. Now scientists have exploited this behavior to make X-ray movies of atomic motion with much more detail than ever...
A SLAC/Stanford study opens a new path to producing laser pulses that are just billionths of a billionth of a second long by inducing ‘high harmonic generation’ in a solid.
Computer simulations and lab experiments help researchers understand the violent universe and could potentially lead to new technologies that benefit humankind.
For the first time in three years, LCLS has added a new instrument to its set of experimental stations. See photos of the brand new MFX hutch, LCLS’s seventh instrument.
The Gordon and Betty Moore Foundation has awarded $13.5 million for an international effort to build a working particle accelerator the size of a shoebox based on an innovative technology known as “accelerator on a chip.”
A team led by SLAC scientists combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D effect that appears linked to a mysterious phenomenon known as high-temperature superconductivity.
A 200-terawatt laser at SLAC will synchronize with X-ray laser pulses to precisely measure more extreme temperatures and pressures in exotic forms of matter.
A major international effort at SLAC is focused on improving our views of intact viruses, living bacteria and other tiny samples using the brightest X-ray light on Earth.