SLAC topics

Energy sciences RSS feed

One of the most urgent challenges of our time is discovering how to generate the energy and products we need sustainably, without compromising the well-being of future generations by depleting limited resources or accelerating climate change. SLAC pursues this goal on many levels.

Studies of atomic-level processes

News Feature

SLAC's Siegfried Glenzer has been selected to receive an Ernest Orlando Lawrence Award, presented by the U.S. Secretary of Energy to honor scientists across...

Photo - Siegfried Glenzer
News Feature

A new theory and computer simulation by SLAC and Stanford researchers rule out high-energy magnetic interactions as a major factor in making copper oxide...

Photo - Researchers at SLAC
News Feature

SLAC researchers have found a new way to transform graphite into diamond. The approach may have implications for industrial applications ranging from cutting tools...

Press Release

Scientists have discovered a potential way to make graphene – a single layer of carbon atoms with great promise for future electronics – superconducting...

Superconducting Graphene Layers
News Feature

A new system at SLAC National Accelerator Laboratory's X-ray laser narrows a rainbow spectrum of X-ray colors to a more intense band of light...

Photo - A view of the soft X-ray self-seeding system during installation in the Undulator Hall at SLAC's Linac Coherent Light Source X-ray laser. (Brad Plummer/SLAC)
News Feature

An experiment at SLAC’s X-ray laser has revealed the first atomic-scale details of a new technique that could point the way to faster data...

Image - A laser-driven electric pulse excites a magnetic response in a multiferroic material that is measured by SLAC's X-ray laser pulse (blue).
Press Release

An electrode designed like a pomegranate – with silicon nanoparticles clustered like seeds in a tough carbon rind – overcomes several remaining obstacles to...

A fanciful illustration of pomegranate seeds inside a conventional battery
News Feature

Jolting complex materials with bursts of energy from rapid-fire lasers can help scientists learn why some of these materials exhibit useful properties such as...

Image - Pictured is the initial, equilibrium distribution of electron energy after an intense pulse of near-infrared light. (SIMES)
News Feature

While this particular material is very unstable, the research shows it may be possible to find a material with the properties graphene has to...

photo of zhongkai liu
News Feature

Teams from Stanford, SLAC and the University of Nebraska-Lincoln collaborate to make thin, transparent semiconductors that could become the foundation for cheap, high-performance displays.

See caption
Press Release

A single layer of tin atoms could be the world’s first material to conduct electricity with 100 percent efficiency at the temperatures that computer...

Photo - tin can and piece of scrap tin sitting on a periodic table of elements with tin "Sn" highlighted
Press Release

Researchers have made the first battery electrode that heals itself, opening a new and potentially commercially viable path for making the next generation of...

photo - research with self-healing polymer