SLAC topics

Accelerator science RSS feed

Accelerators form the backbone of SLAC's national user facilities. Research at SLAC is continually improving accelerators, both at SLAC and at other laboratories, and is also paving the way to a new generation of particle acceleration technology. 

Related link:
Advanced accelerators

Empty undulator hall

News Feature

David Cesar, Julia Gonski and W.L. Kimmy Wu will each receive $2.75 million issued over five years for their research in X-ray and ultrafast...

Early Career Award Winners 2024
Illustration
Scientists have developed an AI-based method that helps gather data more efficiently in the search for new materials, allowing researchers...
self driving experiments
News Feature

The method could lead to the development of new materials with tailored properties, with potential applications in fields such as climate change, quantum computing...

self driving experiments
News Feature

SLAC experimentalists and theorists collaborate to develop critical detector components, data analysis tools, and theoretical models for the HL-LHC upgrade, which will investigate the...

Eight pipes arrayed in a circle lead to a central experimental apparatus.
News Feature

Wan-Lin Hu’s job is to improve the way people and artificial intelligence collaborate to run SLAC’s complex machines.

Wan-Lin Hu is seen talking with talks with accelerator systems operator Kabir Lubana in the lab’s main Accelerator Control Room.
News Feature

What could smaller particle accelerators look like in the future? SLAC scientists are working on innovations that could give more researchers access to accelerator...

This is a graphic image of particles moving through plasma during plasma wakefield acceleration.
News Feature

Teams at SLAC installed new experimental hutches with cutting-edge instruments that will harness the upgraded facility’s new capabilities and expand the breadth of research...

SLAC's linac at sunrise, looking east.
News Feature

The future of experimental particle physics is exciting –  and energy intensive. SLAC physicists are thinking about how to make one proposal, the Cool...

The view down a copper tube.
Photograph

A prototype section of the proposed Cool Cooper Collider beam tunnel.

The view down a copper tube.
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

Leora Dresselhaus-Marais, Claudio Emma,  Bernhard Mistlberger and Johanna Nelson Weker will pursue cutting-edge research into decarbonizing steel production, theoretical physics, generating more intense particle...

This photo shows all four recipients from SLAC and Stanford of the DOE's 2023 Early Career Award
News Feature

The long – but not too long – cavity would ping-pong X-ray pulses inside of a particle accelerator facility to help capture nature’s fastest...

This cartoon figure shows how the cavity-based X-ray free electron laser works in general. The electron beam (blue) travels through an undulator (brown), which causes the beam to release X-ray pulses. These pulses bounce around a set of four mirrors, helping them become coherent, before they continue down the accelerator to experimental halls.