machine learning
October 12, 2023

New AI-driven tool streamlines experiments

The research reveals the potential for machine learning in understanding the complex behavior of quantum materials.

By Ali Sundermier

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory have demonstrated a new approach to peer deeper into the complex behavior of materials. The team harnessed the power of machine learning to interpret coherent excitations, collective swinging of atomic spins within a system. 

This groundbreaking research, published recently in Nature Communications, could make experiments more efficient, providing real-time guidance to researchers during data collection, and is part of a DOE-funded project led by Howard University including researchers at SLAC and Northeastern University to use machine learning to accelerate research in materials. 

The team created this new data-driven tool using "neural implicit representations," a machine learning development used in computer vision and across different scientific fields such as medical imaging, particle physics and cryo-electron microscopy. This tool can swiftly and accurately derive unknown parameters from experimental data, automating a procedure that, until now, required significant human intervention.

Peculiar behaviors

Collective excitations help scientists understand the rules of systems, such as magnetic materials, with many parts. When seen at the smallest scales, certain materials show peculiar behaviors, like tiny changes in the patterns of atomic spins. These properties are key for many new technologies, such as advanced spintronics devices that could change how we transfer and store data. 

To study collective excitations, scientists use techniques such as inelastic neutron or X-ray scattering. However, these methods are not only intricate, but also resource-intensive given, for example, the limited availability of neutron sources. 

Machine learning offers a way to address these challenges, although even then there are limitations. Past experiments used machine learning techniques to enhance the accuracy of X-ray and neutron scattering data interpretation. These efforts relied on traditional image-based data representations. But the team's new approach, using neural implicit representations, takes a different route. 

Neural implicit representations use coordinates, like points on a map, as inputs. In image processing, these networks can predict the color of a particular pixel based on its position. The method doesn't directly store the image but creates a recipe for how to interpret it by connecting the pixel coordinate to its color. This allows it to make detailed predictions, even between pixels. Such models have proven effective in capturing intricate details in images and scenes, making them promising for analyzing quantum materials data.

“Our motivation was to understand the underlying physics of the sample we were studying. While neutron scattering can provide invaluable insights, it requires sifting through massive data sets, of which only a fraction is pertinent," said co-author Alexander Petschm, a postdoctoral research associate at SLAC’s Linac Coherent Light Source (LCLS) and Stanford Institute for Materials and Energy Sciences (SIMES). “By simulating thousands of potential results, we constructed a machine learning model trained to discern nuanced differences in data curves that are virtually indistinguishable to the human eye.”

Pieces falling into place

The team wanted to see if they could make measurements at LCLS, feed them into a machine learning algorithm, and recover the microscopic details of the material as they measured. They did thousands of simulations on what they would measure, with a range of parameters, and fed them all into an algorithm to learn from all the different spectra so they could predict the answers from theory as soon as they measured real spectra.

While waiting to carry out this experiment at the LCLS, it turned out, the measurements they really wanted to make were very similar to inelastic neutron scattering. Petsch realized that neutron scattering data from his thesis aligned perfectly with the team's simulations, led by Zhurun (Judy) Ji, a Stanford University Science Fellow. When the team applied their machine learning model to this real-world data, it was able to overcome challenges, such as noise and missing data points.

Traditionally, researchers rely on intuition, simulations, and post-experiment analysis to guide their next steps. The team demonstrated how their approach could continuously analyze data in real time. This showed the potential for researchers to determine when they've gathered enough data to end an experiment, further streamlining the process. One of the most exciting developments is the potential of this approach for continuous real-time analysis, providing insights into when sufficient data is obtained to conclude an experiment. 

"Our machine learning model, trained before the experiment even begins, can rapidly guide the experimental process," said SLAC scientist Josh Turner, who oversaw the research. “It could change the way experiments are conducted at facilities like LCLS.”

Opening up new avenues

The model's design isn't exclusive to neutron scattering. Named the 'coordinate network,' it's adaptable across various scattering measurements which involve data as a function of energy and momentum. 

“Machine learning and artificial intelligence are influencing many different areas of science,” said co-author Sathya Chitturi, a PhD student at Stanford University. “Applying new cutting-edge machine learning methods to physics research can enable us to make faster advancements and streamline experiments. It's exciting to consider what we can tackle next based on these foundations. It opens up many new potential avenues of research."

LCLS is a DOE Office of Science user facility. This research was supported by the Office of Science (BES).

Citation: S. Chitturi et al., Nature Communications, 20 September 2023 (doi.org/10.1038/s41467-023-41378-4)


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


About SLAC

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Feature

In 1974, the independent discovery of the J/psi particle at SLAC and Brookhaven National Laboratory rocked the physics world, and entire textbooks had to...

50th anniversary of the J/psi discovery
News Feature

Researchers across the lab are developing AI tools to harness data and particle beams in real time and make molecular movies, speeding up the...

Graphic of AI in several science areas
Press Release

The high-energy upgrade will keep the U.S. at the forefront of X-ray science and technology, allowing researchers to advance fields such as sustainability, human...

LCLS-II-HE
News Feature

In 1974, the independent discovery of the J/psi particle at SLAC and Brookhaven National Laboratory rocked the physics world, and entire textbooks had to...

50th anniversary of the J/psi discovery
News Feature

Researchers across the lab are developing AI tools to harness data and particle beams in real time and make molecular movies, speeding up the...

Graphic of AI in several science areas
Press Release

The high-energy upgrade will keep the U.S. at the forefront of X-ray science and technology, allowing researchers to advance fields such as sustainability, human...

LCLS-II-HE
News Feature

David Cesar, Julia Gonski and W.L. Kimmy Wu will each receive $2.75 million issued over five years for their research in X-ray and ultrafast...

Early Career Award Winners 2024
News Feature

His wide-ranging curiosity, original way of looking at problems and sheer joy in solving them drove many important contributions to particle physics. 

SLAC theoretical physicist James D. "BJ" Bjorken
News Feature

The method could lead to the development of new materials with tailored properties, with potential applications in fields such as climate change, quantum computing...

self driving experiments