March 5, 2014

SLAC Partners with Industry to Produce Powerful Klystrons for Research

A cooperative agreement with Palo-Alto based CPI opens the door to routine commercial manufacturing of these powerful vacuum tube devices, which convert electron beams into microwaves that are used to accelerate subatomic particles.

By Glennda Chui

Thanks to a collaboration between the Department of Energy’s SLAC National Accelerator Laboratory and Communications & Power Industries (CPI), research labs around the world will now be able to buy commercially manufactured klystrons that are powerful enough to accelerate electrons to high energies for next-generation physics experiments.

As part of a cooperative agreement, CPI has adapted a SLAC design to build two XL5 klystrons. They tested the first one at SLAC and delivered it in February to the Compact Linear Collider (CLIC) experiment at CERN, the European particle physics laboratory. The second klystron is scheduled to arrive at SLAC for high-power testing in April, and the company says it’s in talks with several more potential customers.

The agreement opens the door to routine commercial manufacturing of these powerful vacuum tube devices, which convert electron beams into microwaves that are used to accelerate subatomic particles.

“Until now, SLAC has been the only source of these ultra-high-power klystrons,” said Norbert Holtkamp, SLAC’s deputy director and head of the lab’s Accelerator Directorate. “We have built about 30 over the years for experiments at Brookhaven and Lawrence Livermore national laboratories, CERN, the Paul Scherrer Institute in Switzerland and Elettra Sincrotrone Trieste in Italy.

“Transferring this technology to industry not only creates a commercial market for these devices,” he said, “but will also support the broader needs of laboratories in the U.S. and around the world that are engaged in high-power radiofrequency science and technology.”

Answering a Call to Fuel Innovation

The agreement also fulfills a 2011 White House directive that calls for federal research labs to fuel innovation by significantly increasing the amount of technology they transfer to industry.

“This is exactly the kind of thing the U.S. Department of Energy is trying to encourage,” said James Siegrist, associate director of the DOE Office of High Energy Physics. “Basic research labs are not set up to turn inventions into commercial products. By partnering with industry, we can get innovations out into the marketplace, create jobs, products and services and help keep U.S. industry globally competitive.”

The agreement has historic resonance for both parties. Palo Alto-based CPI is a spinoff of Varian Associates, which was founded in 1948 by Russell and Sigurd Varian, the inventors of the klystron.

The two-mile-long SLAC linear accelerator used 240 klystrons to accelerate electrons and positrons to nearly light speed for high-energy physics experiments. Klystrons power SLAC’s Linac Coherent Light Source X-ray laser today, and the technology is used extensively in communications, medical technology and industrial, radar and defense applications.

A Spinoff with Many Applications 

SLAC began to develop the XL series of klystrons in 1989 as part of a push by the DOE’s Office of High Energy Physics to develop technology for the Next Linear Collider. Even though the NLC was not constructed, these klystrons have made numerous other advances and applications possible.

“The XL klystron operates at four times the frequency of the klystrons in SLAC’s linac,” said Michael Fazio, who leads the SLAC division that developed the XL. “This allows you to boost particles to the same high energies with a much more compact accelerator system – maybe even a transportable one.” For instance, SLAC has built XL klystrons for an experimental program at Lawrence Livermore National Laboratory that is seeking more effective ways to detect nuclear materials in cargo containers and trucks at a port or border.

“The XL5 runs at extremely high power – 50 megawatts – and at a fairly high frequency for that power, almost 12 GHz,” said Peter Kolda, business development manager for CPI’s Microwave Power Products Division. “Having those two things as requirements at the same time is what makes it difficult. I only know of one other supplier that’s done anything close to this.” For comparison, a kitchen microwave oven operates at 1,000 watts; it would require 50,000 of them to produce the same level of peak power as the XL5.

A Win-win Agreement 

In 2011, CPI entered into a collaborative agreement with SLAC that marries the lab’s capabilities with the company’s ability to produce klystrons on a commercial scale.

CPI adapted SLAC’s klystron design to better interface with equipment at CERN’s CLIC experiment and to make it easier to manufacture. Then it built the klystron and brought it to SLAC for testing at a unique facility that can power the tube with 400,000-volt pulses.

“It would have been at least a million-dollar investment for the company to obtain the high-voltage power supply needed for testing,” said Adam Balkcum, the project engineer for CPI. The ability to use existing SLAC test facilities and equipment, he said, helped make the project economically feasible.

There are many business reasons for a research lab to buy klystrons from a commercial supplier, Kolda said, including the availability of warranties and service, commercial contract terms and economies of scale that could result in lower costs.

Likewise, it makes sense for SLAC to leave the manufacturing to others, said Holtkamp, so it can concentrate on inventing and developing advanced technology for future generations of accelerators – an important part of the DOE Office of High Energy Physics mission of accelerator stewardship.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.     

CPI President and Chief Operating Officer Robert A. Fickett, left, and SLAC Lab Director Chi-Chang Kao look at one of the XL5 klystrons the company built under a cooperative agreement with SLAC.
CPI President and Chief Operating Officer Robert A. Fickett, left, and SLAC Lab Director Chi-Chang Kao look at one of the XL5 klystrons the company built under a cooperative agreement with the lab. (Fabricio Sousa/SLAC)
The first of two XL5 klystrons CPI built under a cooperative agreement with SLAC.
The first of two XL5 klystrons CPI built under a cooperative agreement with SLAC. It was tested at SLAC and delivered in February to the Compact Linear Collider (CLIC) experiment at CERN, the European particle physics laboratory. (Fabricio Sousa/SLAC)
CPI adapted a SLAC klystron design to make it easier to manufacture and to better interface with equipment at CERN’s CLIC experiment.
Klystrons are vacuum tube devices that convert electron beams into microwaves for accelerating subatomic particles. CPI adapted a SLAC klystron design to make it easier to manufacture and to better interface with equipment at CERN’s Compact Linear Collider experiment. (Fabricio Sousa/SLAC)
A closeup of the XL5 klystron
A close-up of the XL5 klystron. Manufactured by CPI, it was brought to SLAC for testing at a unique facility that can power the tube with 400,000-volt pulses. Building its own test facility would have cost the company at least $1 million. ( Fabricio Sousa/SLAC National Accelerator Laboratory)
Dig Deeper

Related stories

Press Release

The high-energy upgrade will keep the U.S. at the forefront of X-ray science and technology, allowing researchers to advance fields such as sustainability, human...

LCLS-II-HE
News Feature

David Cesar, Julia Gonski and W.L. Kimmy Wu will each receive $2.75 million issued over five years for their research in X-ray and ultrafast...

Early Career Award Winners 2024
News Feature

His wide-ranging curiosity, original way of looking at problems and sheer joy in solving them drove many important contributions to particle physics. 

SLAC theoretical physicist James D. "BJ" Bjorken
Press Release

The high-energy upgrade will keep the U.S. at the forefront of X-ray science and technology, allowing researchers to advance fields such as sustainability, human...

LCLS-II-HE
News Feature

David Cesar, Julia Gonski and W.L. Kimmy Wu will each receive $2.75 million issued over five years for their research in X-ray and ultrafast...

Early Career Award Winners 2024
News Feature

His wide-ranging curiosity, original way of looking at problems and sheer joy in solving them drove many important contributions to particle physics. 

SLAC theoretical physicist James D. "BJ" Bjorken
News Feature

The method could lead to the development of new materials with tailored properties, with potential applications in fields such as climate change, quantum computing...

self driving experiments
News Feature

Researchers developed new methods that produce intense attosecond pulses and pulse pairs to gain insights into the fastest motions inside atoms and molecules. It...

attosecond
News Feature

An advisory committee recommends the US work to advance three key areas of emerging accelerator technology.

Illustration of three physics-related tarot cards, labeled Proton-Proton, Muon and Plasma-Wakefield