Illustration

Charge-density waves

Illustration depicting how two types of waves within superconducting materials intertwine to form a third type known as charge-density waves

SLAC scientists used an improved X-ray technique to explore exotic states of matter in an unconventional superconductor that conducts electricity with 100% efficiency at relatively high temperatures. They glimpsed the signature of a state known as pair density waves (PDW), and confirmed that it intertwines with another phase known as charge density wave (CDW) stripes – wavelike patterns of higher and lower electron density in the material. CDWs, in turn, are created when spin density waves (SDWs) emerge and intertwine.

Jun-Sik Lee/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC media relations: 

media@slac.stanford.edu 
 

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Featured in

Related news

Known as “pair-density waves,” it may be key to understanding how superconductivity can exist at relatively high temperatures.

Illustration depicting how two types of waves within superconducting materials intertwine to form a third type known as charge-density waves