Photograph

First 3,200-megapixel images

Taking the first 3,200-megapixel images was an important first test for the focal plane. To do so without a fully assembled camera, the SLAC team used a 150-micron pinhole to project images onto the focal plane. Left: Schematic of a pinhole projector that projects images of a Romanesco’s detailed texture onto the focal plane. Right: SLAC's Yousuke Utsumi and Aaron Roodman remove the pinhole projector from the cryostat assembly after projecting the first images onto the focal plane. Explore the test images in full resolution using the links at the bottom of this press release.

Greg Stewart/Jacqueline Orrell/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC media relations: 

media@slac.stanford.edu 
 

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Featured in

Related news

The camera will explore cosmic mysteries as part of the Rubin Observatory’s Legacy Survey of Space and Time.

LSSTCam Focal Plane Header

Once set in place atop a telescope in Chile, the 3,200-megapixel LSST Camera will help researchers better understand dark matter, dark energy and other mysteries of our universe.

Researchers examine the LSST Camera
Dig Deeper

Related images & videos